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We now turn to the main object of our study, the learning dynamics themselves. We
begin with the replicator dynamic, which is a foundational concept in evolutionary game
theory (EGT) and population dynamics [7].

In the following we look at the case where only a single matrix A defines the game.
This corresponds to a symmetric game in which the agent is, in essence, playing against
themselves. One could equivalently think of this as a two player game in which B = AT , so
we only need A to define the game. In this context an NE x̄ is a strategy for which

x · x̄ ≤ x̄ · x̄ (1)

The equivalent statement to Lemma 1.1 in this context is that x̄ is an NE if and only if
(Ax)i = x ·Ax for all i such that xi > 0.

1 Introducing the Replicator Dynamic

Consider a large population, in which individuals are identified according to some pheno-
type1. As an example, let us say that a population is divided into individuals with white
fur, brown fur and black fur. In game theoretic terms, we can consider these as belonging
to a set of pure strategies {W,Br,Bl}. Let xi denote the proportion of the population who
play with a given strategy i. In our example, x1 denotes the proportion who have white fur.
Then x = (x1, . . . xn)T is a probability vector which takes values on the unit-simplex.

The question of evolutionary game theory is to ask, which of these phenotypes will thrive,
and which have the potential to become extinct? EGT takes the established principle of
evolution that of ‘survival of the fittest’, and places it into a game theoretic framework,
which we can analyse mathematically. Specifically, let us consider that the fitness of an
individual is encoded in a function f : ∆ → R. If this individual plays action i, then their
payoff is fi(x). Further, the average payoff received by the entire population is

∑
i xifi(x).

The thesis of evolutionary dynamics is that strategies which have higher fitness than the
average should be more likely to survive and, therefore, their proportion should increase,
whilst those who have a lower fitness should decrease over time. This is recorded in the
continuous time replicator dynamics:

1a physical attribute of an individual which results as a combination of its genotype and the environment
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ẋi(t) = xi(t)(fi(x)−
∑
i

xifi(x))

In particular, if f can be written in terms of a payoff matrix A ∈Mn(R), then we have

ẋi(t) = xi(t)((Ax)i − x ·Ax) (2)

As such, when the payoff received by an agent playing action i, given by (Ax)i, is greater
than the average payoff across the entire population, ẋi is positive, and so the proportion
playing i increases with time.

Remark. An important point to note regarding the replicator dynamic (RD) is that the
unit-simplex is invariant2 with respect to this equation. This means that x will always take
values in the unit-simplex as they evolve using RD. This fact is easy to check.

Remark. Readers who are familiar with population dynamics may notice that the replicator
dynamic shares a similar idea, and a similar form to the famous Lotka-Volterra dynamics [6],
which similarly describe the evolution of competing species. We show in the Appendix that
this similarity can indeed be formalised, as there is a diffeomorphic transformation which
maps orbits of the replicator dynamic to those of the Lotka-Volterra dynamics.

Remark. Whilst the replicator dynamic speaks of proportions of phenotypes in a population,
we can analyse it from the view of mixed strategies in a game. Instead of a population
whose proportions are given by the vector x = (x1, ..., xn)T , we instead consider a single
agent whose mixed strategy is given by the same vector.

Remark. Whilst its primary mode of application has historically been in understanding pop-
ulation dynamics, the replicator dynamic also turns out to be a continuous approximation
to Follow the Regularised Leader [1], a particular type of online learning algorithm. We do
not report on this relationship here, but it is well worth reading. As such, we point to [4]
for a incredibly informative exposition into this relationship.

Another interesting point to note about the replicator dynamic is that its behaviour does
not change under a certain transformation to the matrix A.

Example 1. Consider the symmetric matrix game A defined by

A =

(
2 5
4 3

)
(3)

The flow defined by the replicator dynamic (2) can be seen in Figure 1. It can be seen
that there is an NE at the points e1, e2 and x̄ = (0.5, 0.5)T . It can be seen that the point x̄
is a Nash Equilibrium of the game, whereas e1 and e2 are not.

Lemma 1. The transformation A→ Ã given by Ã = A+(c1, . . . , cn) where c1, . . . , cn ∈ Rn

leaves the replicator dynamics unchanged.

In words, if we were to add constants to each column of A does not alter the flow
generated by RD. This fact is rather easy to check and so we leave it as an exercise.

With the replicator equation defined, we can begin to ask some central questions

2Formally, a set E is invariant with respect to a flow φ if, for any x ∈ E, φt(x) ∈ E for all t ≥ 0.
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Figure 1: The flow defined by (2) on the game in Example 1

I How does the central idea of Game Theory, namely the Nash Equilibrium, fit into the
replicator dynamic?

II Under what conditions does a given phenotype (or strategy) in the population go
extinct in the long run?

III What sorts of dynamical behaviour does RD exhibit?

These questions are not unique to the Replicator Dynamic and, as we will see, form
the basis for our analysis of the other learning algorithms. The first question is sometimes
referred to as the ‘folk theorem’ [2], which frames the NE as a fixed point of the replicator
dynamics, thereby giving it a dynamical interpretation. The second is referred to as the
question of ‘permanence’, which we shall go on to describe. The final question, that of
complex dynamics, is an area which is rich with open questions and active research. One of
the most interesting results is that, even in the simplest settings, the replicator dynamic can
lead to Hamiltonian chaos [5].

1.1 The Folk Theorem of Evolutionary Game Theory

Let us consider the first of our questions. For this, we have the following theorem.

Theorem 1. Consider the replicator dynamics (2).

I Any Nash equilibrium x̄ is an equilibrium of RD.

II If x̄ is the ω-limit of an orbit x(t) and x̄ ∈ int∆, then x̄ is an NE.

III If x̄ is Lyapunov stable, then it is an NE.

Before we continue with the proof, we note that there is a brief introduction to concepts
in dynamical systems provided in the Appendix, which includes the definition of an ω-limit
set and Lyapunov stability.

Proof. ( I ) Let us first take the case in which x̄i = 0. Then the right hand side of (2) is
automatically zero. Now let us assume x̄i > 0. We know from Lemma 1.1 that, for an NE
(Ax̄)i = x̄cdotAx̄. In this case the second term on the right hand side of (2) vanishes and
we still attain ˙̄xi = 0. Therefore, x̄ is a fixed point of (2).

( II ) Let us assume that x̄ is not an Nash Equilibrium. Then, there exists an i such that
ei ·Ax̄ > x̄ · Ax̄. Therefore, there is some ε for which (Ax̄)i − x̄ ·Ax̄ > ε and so ˙̄xi > εx̄i

for all i. This, however, is impossible since we assumed x̄ was the ω-limit of some orbit.
( III ) The argument works in a similar manner to that of (II ). If we assume that x̄

is not an NE, then there exists some i and some ε for which (Ax̄)i − x̄ · Ax̄ > ε for all
x in a neighbourhood of x̄. In this case, xi increases, which contradicts the assumption of
Lyapunov stability.
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Figure 2: Trajectories of the Replicator Dynamic (2) under the symmetric game in Example 9.

Example 2. Consider the symmetric game A defined by

A =

 0 1 −0.5
−0.5 0 1

1 −0.5 0

 (4)

We will see soon that this is an example of a ‘monocylic’ game, a class of games which
shows some quite remarkable properties under the replicator dynamics. The flow under these
dynamics is shown in Figure 2.

Notice that x̄ = (1/3, 1/3, 1/3)T ∈ int∆ is the ω-limit of orbits through interior points.
As such, we can see that it is an NE of the game A. We can also verify this by seeing that
the rows of A add to 1. Therefore (Ax̄)1 = (Ax̄)2 = (Ax̄)3 so x̄ is an NE.

2 A brief excursion into Evolutionary Game Dynamics

We can, in fact, relate the equilibria of RD to the game by invoking a stronger notion of
equilibrium.

Definition (Evolutionary Stable Strategy). In a symmetric game A, a strategy x̄ is an
Evolutionary Stable Strategy (ESS) if, for all x ∈ ∆

x ·A(εx + (1− ε)x̄) < x̄ ·A(εx + (1− ε)x̄) (5)

From an EGT perspective, the ESS can be understood by considering a population of
agents who play some mixed strategy x̄. Suppose they were to be invaded by a small number
of agents who play a ‘mutant’ strategy x. We formalise that this is a small group of mutants
by saying that their proportion ε in the population is sufficiently small. Now, if a randomly
chosen agent is pitted against another random individual, the probability with which the
opponent is playing x is ε, whilst the probability that they are a non-mutant is 1− ε. If the
first player is a non-mutant, then the payoff they will receive is
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x̄ ·A(εx + (1− ε)x̄).

On the other hand, if they are a mutant, they will receive

x ·A(εx + (1− ε)x̄)

The ESS condition, in some sense, says that a randomly chosen agent is better off in
terms of payoff by being a non-mutant rather than a mutant. As such, the strategy x̄ is
stable against invading groups. An equivalent definition of the ESS can be derived through
the following Lemma.

Lemma 2. The ESS condition is equivalent to the statement that, for all x 6= x̄ sufficiently
close to x̄

x ·Ax < x̄ ·Ax (6)

Moreover, if x̄ ∈ int∆ is an ESS then this holds for all x ∈ ∆\{x̄}

Proof. c.f. ([8] Lemma 1.3)

The ESS relates to the NE in the following manner.

Lemma 3. x̄ is a strict NE =⇒ x̄ is an ESS =⇒ x̄ is an NE

Proof. If x̄ is a strict NE, then x ·Ax̄ < x̄ ·Ax̄ for any x ∈ ∆. By continuity, the inequality
must hold with small ε, i.e.

x ·A(εx + (1− ε)x̄)

which is exactly the ESS condition. Now if we assume x is an ESS, then we can take the
limit as ε→ 0 to yield that x ·Ax̄ ≤ x̄ ·Ax̄ for all x 6= x̄.

Lemma 4. If x̄ ∈ int∆ is an ESS, then there are no other NE.

Proof. If x̄ is an ESS, then it is also an NE, so that (Ax̄)i = x̄ ·Ax̄ for all i. We also have
the ESS condition that x ·Ax < x̄ ·Ax for all x 6= x̄. In this case, x cannot be an NE, since
it is not a best response to itself.

Example 3. Consider the symmetric game A defined by

A =

(
−1 2
0 1

)
(7)

The rows of the matrix add to 1 and so we have that x̄ = (0.5, 0.5)T is an NE of the game.
This is not strict since we have that x ·Ax̄ = x̄ ·Ax̄ so that BRA(x̄) = ∆.

Now let us check whether x̄ is also an ESS. Let us write x = x̄ +

(
ε
−ε

)
. Then Ax =(

1/2− 3ε
1/2− ε

)
so that
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x ·Ax =

(
x̄ +

(
ε
−ε

))
·
(

x̄ +

(
−3ε
−ε

))
=

1

2
− 2ε− 2ε2.

On the other hand we have that

x̄ ·Ax = 1/2− 2ε.

So that

x ·Ax < x̄ ·Ax.

Therefore, by Lemma 2, x̄ is an ESS. Furthermore, by Lemma 4, x̄ ∈ int∆ is the only
NE.

3 RD and ESS

We now return to our analysis of the replicator dynamics with the following theorem

Theorem 2. If x̄ is an ESS then it is asymptotically stable under RD. Moreover, if x̄ ∈ int∆
then it is globally attracting for the entire simplex under the NE.

Proof. Consider the function P (x) =
∏

i x
x̄i
i . Our first claim is that this has a unique

maximiser at x̄. This follows from a direct application of Jensen’s inequality, namely that
for a strictly convex function f defined on some interval I

f(
∑
i

pixi) ≤
∑
i

pif(xi)

for all x1, . . . xn ∈ I and all p1, . . . , pn ∈ ∆ with equality if and only if all xi are equal. This
gives the result that

∑
i x̄ilog(xi

x̄i
) ≤ log (

∑
i xi) = log1 = 0. This holds since log is a strictly

concave function and so the inequality is reversed. Therefore,
∑

i x̄ilogxi <
∑

i x̄ilogx̄i.
Since log is monotone, this means that P (x) ≤ P (x̄), with equality if and only if x = x̄.
This shows that the maximiser is unique.

We now show that P gives rise to a Lyapunov function. Notice

Ṗ

P
=

d

dt
logP =

d

dt

∑
i

x̄ilogxi =
∑
i

x̄i
ẋi

xi

=
∑
i

x̄i((Ax)i − x ·Ax) = x̄ ·Ax− x ·Ax.

Since x̄ is assumed to be an ESS, we know that x̄ ·Ax−x ·Ax > 0 so that Ṗ > 0. There-
fore, P satisfies the conditions required for a Lyapunov function, and so x̄ is asymptotically
stable (i.e. orbits starting near x̄ converge to x̄.)
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4 Permanence

Now we turn to the second of our questions, namely: if a phenotype is present in the initial
population, will it remain in the population for all time? We frame this question mathe-
matically through the idea of permanence which allows us to determine which strategies and
phenotypes are safe from extinction. Formally we write this as

Definition (Permanence). The replicator equation (2) is permanent if there exists a compact
set K ⊂ int∆ such that, for all interior initial conditions x(0) ∈ int∆ there is a T such that,
for all t ≥ T , x(t) ∈ K. Equivalently, RD is permanent if there is a δ > 0 such that
lim inft→∞ xi(t) ≥ δ for all i whenever the initial condition x(0) ∈ int∆.

A particular class of games which shows the permanence property is the symmetric Rock-
Paper-Scissors game. In fact, we can generalise this to an even wider class of games.

Definition (Monocyclic games). A symmetric game A is monocyclic if, for all i (A)ii = 0,
(A)ij > 0 if i = j + 1(mod n) and (A)ij ≤ 0 otherwise.

Example 4. Monocyclic Game Example

Theorem 3 (Hofbauer and Sigmund ’88 [2]). If the symmetric game A is monocyclic, then
the replicator dynamics (2) is permanent if and only if there is a rest point z ∈ int∆ with
z · Az > 0.

Theorem 4 (Hofbauer and Sigmund ’88 [2]). If RD is permanent, then there exists a unique
rest point z ∈ int∆. The time averages of the orbit converge to z, that is

1

T

∫ T

0

xi(t)dt→ zi (8)

for T → ∞ and i = 1, . . . , n. Conversely, if there are are no rest points in int∆, then
every orbit converges to the boundary of the simplex ∂∆

5 Complex Dynamics in the Replicator Equation

5.1 Two Player Replicator Dynamics

So far we have considered symmetric games, which only involve one player. Let us now
return to our original study of two-player bimatrix games. In this setting, the Replicator
Dynamic can be written as3

ẋi − xi((Ay)i − x ·Ay)

ẏi − yi((BTx)i − x ·By) (9)

3there are actually two different conventions for writing the replicator dynamic which stem from different
conventions with which to write a bimatrix game. We choose the most commonly seen convention here and
stick with it, since the other convention can be found by simply transposing B. c.f. [8] Chapter 2 for a
discussion on these conventions.
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Example 5 (Iterated Prisoner’s Dilemma). We cannot, in good conscience, report on a
game theoretic concept without referring back to the Prisoner’s Dilemma.

Here, we consider a slight variation, known as the Iterated Prisoner’s Dilemma (IPD). In
this example, the prisoners are repeatedly arrested in their connection with a serious crime4

and must make the same decision as before. However, they will now base their decision on
their prior experience in playing the game with their opponent.

In particular, both agents will choose to either Always Cooperate (AllC) with the other
prisoner (i.e. keep shut), Always Defect (AllD) (i.e. confess) or engage in Tit-for-Tat
(TFT). The final of these states that, if an agent sees that their opponent cooperated in the
last round of the game, then they will do so as well. However, if the opponent defected, then
they will follow suit in this round. Note that the strategy AllD is what game theory predicts
to be the natural outcome of the game, since the Nash Equilibrium of the game was to confess
to the crime.

This game was studied experimentally in 1980 by Robert Axelrod. In this experiment, he
asked participants to submit programs who would play the IPD game against each other. It
was found that the agent which performed best was the TFT strategy. This came as something
of a surprise since it went against the common notion that one should act ‘selfishly’, which
is what AllD requires. Instead TFT encodes some form of altruism in the sense that agents
will work with each other if they see that the other is cooperating. However, they will punish
any defection by defecting in the next turn.

The IPD game is studied in [3] and we discuss some of the results here. Noting that
the strategy set of the agents are {AllC, AllD, TFT}. Then the game is defined through the
payoff matrix

A =

 Rm Sm Rm
Tm Pm T + P (m− 1)

Rm− c S + P (m− 1)− c Rm− c

 (10)

In which T > 4R > P > S, m > 0 is the expected number of rounds in the game and
c > 0 is a small cost for choosing the TFT strategy. In Figure 3 we show the action of
the replicator dynamic as well as a variant known as the replicator-mutator equation. The
latter considers the case in which the agent randomly changes their mixed strategy at some
mutation rate u (c.f. [3]). This introduces some stochasticity into the strategy evolution. It
can be seen that, by increasing u, the dynamics move from converging to the AllD strategy
to a cycle near the TFT strategy.

5.2 Learning in Two-Player Zero Sum Games is a Hamiltonian
System

In this section we consider what is, in the author’s opinion, one of the most important results
that bridge the gap between Game Theory and Dynamical Systems. In particular, we find
that when agents update their action profiles through the replicator dynamic, the flow is
akin to that of an incompressible fluid. Specifically, we will see that volume elements are
conserved. In fact, we will go even further to learn that the replicator dynamic come under

4it never occurred to either to give up their life of crime since they get caught so often



5 COMPLEX DYNAMICS IN THE REPLICATOR EQUATION 9

Figure 3: (Left) Trajectories of Replicator Equation (2) in the IPD Game. (Middle) Trajectories
of the Replicator-Mutator Equation [3] for u = 10−6 (Right) u = 10−4.

the class of Hamiltonian Systems5 [6]. We will also see that these facts mean that, in zero
sum games, learning through replicator does not lead to an equilibrium. Instead, they give
rise to periodic behaviour, and even chaos.

Example 6. In Figures 4a and 4b we look at two zero-sum games - namely Matching Pennies
and Rock-Paper-Scissors. These games are zero sum in the sense that B = −A, so we only
need A to define the game. For Matching Pennies we have

A =

(
1 −1
−1 1

)
(11)

For Rock-Paper-Scissors we have

A =

 0 −1 1
1 0 −1
−1 1 0

 (12)

Since these matrices both have rows of constant sum, the NE lies in the centre of the
simplex. From the Figure we can see that these take the form of topological centres. This
means that orbits form closed ellipses around the NE. In particular, we notice that the flow
is periodic.

Theorem 5. Let (A,−A) be a zero-sum bimatrix game. Then, the flow generated by the
replicator dynamics (9) is volume-preserving.

Proof. We begin by making the transformation

ui = ln
xi+1

x1
vi = ln

yi+1

y1
.

The inverse of this transformation is given by

xi+1 =
eui

1 +
∑n−1

j=1 e
uj

Then

5Again, we discuss these concepts in the Appendix
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(a) Matching Pennies Game (11) (b) Rock-Paper-Scissors Game (12)

Figure 4: Trajectories under Replicator Dynamic (9) for the (a) Matching Pennies Game and
(b) Symmetric Rock-Paper-Scissors game. Both admit the centre of the simplex as an NE, and
therefore a fixed point of (9). The nature of this fixed point is that of a topological centre [6] (i.e.
closed orbits around the equilibrium).

u̇i =
1

xi+1

ẋi+1 −
1

x1
ẋ1 v̇i =

1

yi+1

ẏi+1 −
1

y1
ẏ1

= (Ay)i+1 − (Ay)1 = (BTx)i+1 − (BTx)1

=

∑
i(aij − a1j)evj + (ai1 − a11)

1 +
∑

j e
vj

=

∑
i(bji − bj1)euj + (b1i − b11)

1 +
∑

j e
uj

Now let us take the divergence of the vector field acting on (u,v)

∇ · F =
∑
i

∂u̇i
∂u̇i

+
∂v̇i
∂v̇i

= 0.

Now, by Louiville’s Formula (c.f. Appendix), we can say that the rate of change of volume
d
dt
vol(Ω(t)) = 0 for any set of initial conditions Ω(0).

We now take this result even further with the following theorem.

Theorem 6 (Hofbauer ’98). Let (A,−A) be a zero-sum bimatrix game. The replicator
dynamic (9) is a Hamiltonian System. In particular, it can be written in the form(

ẋ
ẏ

)
= J∇H (13)

where J is a skew-symmetric matrix given by(
0 A
−A 0

)
(14)
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and H is a Hamiltonian function given by

H(x,y) = DKL(p̄||x) +DKL(q̄||y) =
∑
i

p̄i ln
p̄i

xi

+
∑
i

q̄i ln
q̄i

yi

Proof. Let us take the transformation

ui = −lnxi +N−1
∑
k

lnxk vi = −lnyi +N−1
∑
k

lnyk

Under this transformation the Replicator Dynamic becomes

ui = (Ay)i −
∑
j

(Ay)j

vi = (BTx)i −
∑
j

(BTx)j

Then, through some rote manipulation, we can find that

∂H

∂ui
= (xi − p̄i)

=⇒ −A
∂H

∂ui
= −A(xi − p̄i)

=⇒ −A
∂H

∂ui
= −Axi.

Similarly, A∂H
∂vi

= Ayi. The final inequality holds since we can assume, without loss of
generality, that

∑
i aij = 0. Finally, this means that

J∇H =

(
Ay
−Ax

)
=

(
u̇
v̇

)
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